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Scale Changing Technique for
the Electromagnetic Modelling of

MEMS-controlled Planar Phase-shifters
Étienne Perret,Student Member, IEEE,Hervé Aubert,Senior Member, IEEE,and Hervé Legay

Abstract— A scale changing approach is proposed for the
electromagnetic modelling of phase-shifter elements usedin
reconfigurable MEMS-controlled reflectarrays. Based on the
partition of the discontinuity plane in planar sub-domains with
various scale levels this technique allows the computationof
the phase shift from the simple cascade of networks, each
network describing the electromagnetic coupling between two
scale levels. The high flexibility of the approach associated
with the advantages of the Integral Equations Formulations
renders this original approach powerful and rapid. The scale
changing technique allows computing quasi-instantaneously the
1024 phase-shifts achieved by10 RF-MEMS switches distributed
on the phase-shifter surface. Moreover the proposed approach
is much better than the FEM-based software in time costing.
Experimental data are given for validation purposes.

Index Terms— multiscale structures, RF-MEMS, planar phase-
shifter, reflectarrays.

I. I NTRODUCTION

REFLECTARRAY consists of a feeding antenna illumi-
nating a planar microstrip array which is designed to

scatter a planar phase surface in front of the aperture [1,2]. The
introduction of a specific small phase-shift for reconstituting a
planar phase surface in the desired direction may be achieved
by using microstrip patches with passive delay lines [3-5],by
adjusting the patch size [6,7] or else, by tuning the substrate
height [8]. Reflectarray antenna with Radio-Frequency Micro-
Electromechanical Switches (RF-MEMS) is an emerging tech-
nology for reconfigurable and scanning antennas. A scanning
antenna may be used for high-rate data transmission between
nano-satellites flying in formation, beam steering for radar
antenna and beam hopping for a multimedia antenna. The
need for reconfigurable antenna is mainly related to flexibility.
Such antenna allows the redefinition of their initial reserved
missions. Moreover in-orbit sparse antennas are often required
for global coverage systems, which would substitute any fail-
ing antenna. Recently circular [9] and linear [10] polarization
reflectarrays controlled by RF-MEMS have been selected for
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Fig. 1. Planar phase-shifter used in Ku-band MEMS-controlled reflectarrays.
The structure has been manufactured on an alumina substrate(relative
permittivity: 9.8; thickness:0.254 mm). One side of the substrate is shown in
this figure. The opposite side of the alumina substrate is completed by adding
an air layer of thickness h =2 mm followed by a metallic plane (short-circuit).
For experimental purpose, this planar structure is inserted in the cross section
of a metallic waveguide [12].

two applications where MEMS technology offers interesting
capabilities: (1) for Ka-band transmission of high flow between
small satellites, observation and scientific expeditions of nano-
satellites constellation and, (2) for Ku-band missionsGEO-
telecomrequiring a reconfigurable satellite cover. In such re-
flectarray antenna the phase-shift variation is controlledby the
UP/DOWN state of a finite number of RF-MEMS switches: for
a phase-shifter element containingN switches,2N phase-shifts
are available. In this paper we focus on the electromagnetic
modelling of planar phase-shifters used in linear polarization
reflectarrays controlled by RF-MEMS. In [10-12] the concept
of MEMS-controlled reflectarray is developed and a strong
need for an accurate and rapid electromagnetic simulation tool
is clearly identified.

For optimization purposes fast and accurate electromagnetic
simulations of a single phase-shifter element are needed.
However classical full-wave methods –i.e., the Method of
Moment or the Finite Element Method– require in this case a
large computer storage capability and are very time-consuming
as the number of switches increases. Moreover the wide
diversity of scales –in practice the ratio between the largest
and smallest dimensions in a single phase-shifter element is
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higher than100– may generate ill-conditioned matrices in
the numerical treatment of the boundary value problem. The
Integral Equation Formulation (IEF) with entire domain trial
functions [13] allows a reduction in the number of unknowns
but suffers from low flexibility. An original approach, named
the scale changing technique, is proposed here for handling
the multiscale nature of the structure. Using a partition ofthe
discontinuity plane in multiple planar sub-domains of various
scale levels, the scale changing technique allows the compu-
tation of the phase-shift variation generated by the MEMS-
controlled phase-shifter from the simple cascade of networks,
each network describing the electromagnetic coupling between
two scale levels. Very recently, this approach has been applied
with success to the computation of the input impedance of
planar antennas [14]. The application of the Scale Changing
Technique to MEMS-controlled planar phase-shifters is more
complex because it requires to handle many scale levels. A
large collaborative research work has been reported in [10]
including multiple industrial-oriented considerations relative to
the design, the technology and the manufacturing of MEMS-
controlled reflectarrays: this report is not focused on the
numerical technique and does not give concrete numerical
results for evaluating the key advantages (low computation
time, high flexibility) of the Scale Changing Technique com-
pared with classical numerical techniques. Finally, the research
work reported in [15] is focused on the derivation of the
equivalent network of a single RF-MEMS switch and is not
concerned with the electromagnetic modelling of multi-scale
planar circuits: in [15] the scale changing technique couldbe

viewed as a special case of the Mode Matching Technique.
In the present paper, on the one hand, multiple scale levels
are taken into account by an original cascade of more than
one scale changing networks and, on the other hand, present
application is distinct from the authors’ previous work.

The paper is organized as follows: in Section II the scale
changing technique is applied to the electromagnetic mod-
elling of a planar phase-shifter used in MEMS-controlled
reflectarrays and key general characteristics of the proposed
method are given. The computational results and experimental
validations are presented in Section III. The1024 phase-
shifts obtained from a phase-shifter element with10 RF-
MEMS switches are calculated and discussed. Finally, the ratio
between the DOWN- and UP-state capacitances providing a
range of360◦ phase-shift is determined.

II. THE SCALE CHANGING TECHNIQUE

A. the MEMS-controlled planar phase-shifters

For the sake of clarity in the theoretical developments
let us consider planar phase-shifters composed of3 metallic
patches and10 RF-MEMS switches (see Fig. 1). Note that
the approach can be applied to planar phase-shifter with
arbitrary numbers of patches and RF-MEMS switches. Such
phase-shifters have been advantageously used as the cells
of reconfigurable MEMS-controlled reflectarrays [10-12]: the
UP/DOWN states and positions of the switches allow several
operating modes and interesting discrete tuning of the slit
length. Experimental characterizations are generally carried
out by placing the planar phase-shifter in the cross section
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Fig. 2. A multi-scale view of the planar phase-shifter located in the cross section of a metallic waveguide.
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of a metallic rectangular waveguide and by considering a
TE10 incident mode [12]. In this Section, the scale changing
technique is applied for predicting the phase-shift introduced
by the phase-shifter on theTE10-mode. Computational results
are compared with measurements in the next Section. As
illustrated in Fig. 2, at each scale levelsl = [0 : 4], planar
regions or domains may be defined as follows:

• at scale levelsl = 0, the waveguide cross-section defines
the rectangular domainΩ0;

• at scale levelsl = 1, the rectangular domainΩ1 of surface
S1 gathers together the three patches, the two slit and the
10 RF-MEMS switches;

• at scale levelsl = 2, the slot domainΩi
2(with i = [1, 2])

of surfaceSi
2 (< S1) is particularized;

• at scale levelsl = 3, the domainΩi,j
3 of RF-MEMS

switches (withi = [1, 2] andj = [1 : 10]) of surfaceSi,j
3

(< Si
2) is identified;

• finally, at the smallest scale levelsl = 4, the movable
part Ωi,j

4 of the RF-MEMS switch is defined.

As indicated in Fig. 2, the domainΩ1 is bounded by perfect
magnetic conditions whileΩi

2, Ωi,j
3 and Ωi,j

4 are enclosed
by perfect magnetic and electric conditions. These boundary
conditions are imposed at the contour of the various domains
and are assumed to not greatly perturb the electromagnetic
field in the structure. Due to the formulation of such (ar-
tificial) boundary conditions, the scale changing technique
is an approximate approach and not an exact method. Note
that the natural basis for expanding the current density on
the domainΩ1 (i.e., on the metallic patch) is the set of
modes in a rectangular waveguide of cross sectionΩ1 and
bounded bymagneticwalls. However, as far as the numerical
convergence is reached, we have observed numerically that
the set of modes in a rectangular waveguide of cross section
Ω1 and bounded byelectric walls provides to reach also an
accurate solution for the phase-shift, but with an high number
of modes. Consequently the choice between magnetic and
electric boundary conditions seems to be not critical. The
electromagnetic field in each domainΩ (with Ω = Ω1, Ωi

2,
Ωi,j

3 andΩi,j
4 ) can be expanded on the set of propagating and

evanescent modes in an artificial waveguide of cross sectionΩ.
As reported in the Section II.B, from such field representation,
scale changing networks can then be derived for the modelling
of the electromagnetic coupling between two successive scale
levelssl andsl + 1.

B. Scale changing network

The network representation of the electromagnetic coupling
between two successive scale levels is now derived.

As sketched in Fig. 3 (a) consider the domainΩsl
at scale

level sl as a discontinuity planeΩsl
composed of the sub-

domainΩsl+1 (at scale levelsl + 1) and the complementary
perfect electric or magnetic domain̄Ωsl+1. By adopting the
set of propagating and evanescent modes in the two artificial
waveguides of cross sectionsΩsl

and Ωsl+1, the impedance
or admittance matrix of the discontinuity plane can be de-
rived from a Multimodal Variational Technique [16]. High
order evanescent modes are shorted by their (pure imaginary)

(a) (b)

Ωsl

Ωsl+1

(V sl+1, Isl+1)

(V sl+1, Isl+1)

(V sl , Isl)

(V sl , Isl)

[Y sl,sl+1]

[Zsl,sl+1]

or

perfect electric or
magnetic boundary condition

Fig. 3. (a) Discontinuity plane considered as a building block in the scale
changing technique, and (b) its equivalent network, calledhere thescale
changing network.
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Fig. 4. (a) RF-MEMS switch used in the phase-shifter at the smallest scale,
and (b) its equivalent network.

impedance and are saidpassiveand, propagating and low
order evanescent modes –oractivemodes– are used to model
the electromagnetic coupling between two successive scale
levels. The number of active and passive modes is determined
a posteriori from the numerical convergence of the phase-
shift. Active modes are symbolized by ports in the network
representation of the discontinuity plane given in Fig. 3 (b).
This network, called here thescale changing network, is
then characterized by its impedance[Zsl,sl+1] or admittance
[Ysl,sl+1] matrix such that:

[

Vsl

Vsl+1

]

= [Zsl,sl+1]

[

Isl

Isl+1

]

or
[

Isl

Isl+1

]

= [Ysl,sl+1]

[

Vsl

Vsl+1

]

(1)

where(Vs, Is) denote respectively the voltage and current
magnitudes of active modes at scale levels (s = [sl, sl + 1]).

C. Surface impedance matrix for RF-MEMS switches

Fig. 4 (a) displays the geometry of RF-MEMS switch in
the domainΩi,j

4 (i = [1, 2] and j = [1 : 10]). As reported
in [15], the set of propagating and evanescent modes in an
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Fig. 5. Equivalent network of the phase-shifter as the cascade of scale changing networks shunted by the equivalent networks of the RF-MEMS switches.

artificial waveguide of cross sectionΩi,j
4 allows the derivation

of the multi-port network modelling the RF-MEMS switch.
Note that, if only one active mode –i.e., the TEM mode– is
adopted in the domainΩi,j

4 , the network is equivalent to the
surface impedanceZs = 1

jC
i,j

MEMS
ω

, where the capacitance

Ci,j
MEMS is given by

Ci,j
MEMS = 2εo

bi,j
4 hi,j

vi,j

+∞
∑

n=0,1,2,...

coth
(

γi,j
2n+1h

i,j
)

γi,j
2n+1h

i,j

...







sin
[

(2n + 1) π
2

b
i,j
4

vi,j

]

(2n + 1) π
2

b
i,j
4

vi,j







2

(2)

with
(

γi,j
2n+1

)2

=
[

(2n + 1)
π

2vi,j

]2

− k2
0

andk0 designates the free-space wavenumber.

D. Formulation of the scale changing technique

As shown in Fig. 5 the equivalent network of the MEMS-
controlled planar phase-shifter is obtained from the cascade of

4 scale changing networks. Each networks model the electro-
magnetic coupling between two successive scale levels. The
cascade is shunted by10 multi-port networks, each modelling
a RF-MEMS switch. Following Sections II.B and II.C, all the
networks are computed separately. The analytical expressions
of their impedance or admittance matrices are reported in
Appendix. The input impedanceZin of the cascade is then
computed and the phaseφ of the reflection coefficient is finally
deduced from the following relationship

φ = Arg

[

Zin − ZTE10

Zin + ZTE10

]

(3)

whereZTE10 designates the impedance of theTE10-mode.
The number of active modes in all impedance or admittance
matrices is such that the numerical convergence of the phase
φ is reached.

Before presenting the computational results and experi-
mental validations, let us point out key characteristics of
the proposed scale changing technique. As introduced in
Section II.A this technique is based on the partition of the
discontinuity plane in multiple domains of surfaceSsl

(with
S1 > S2 >. . . ). In order to eliminate numerical problems
due to the treatment of ill-conditioned matrices, the partition



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 5

Fig. 6. Measurement cell [10,11].

can be chosen in order to avoid critical aspect ratios: two
successive scale levelssl and sl + 1 may be such that, for
instance,Ssl

/Ssl+1 < 100. Moreover, at each scale level
sl, the electromagnetic field can be described as precisely
as wished by taking an appropriate number of modes in the
corresponding domain. Finally, since the computation of all the
networks can be performed separately, a modification of the
phase-shifter geometry at scalesl requires the recalculation of
only two scale changing networks. In other words the partition
of the discontinuity plane in multiple domains makes the
approach modular (Lego approach). Note that the computation
of the phase-shift resulting from the only modification of
the switches (UP/DOWN) state is instantaneous because it
does not require the recalculation of the scale changing net-
works. Boundary conditions are artificially introduced in the
formulation of the scale changing technique. These boundary
conditions enclose the various scale-dependent domains and
consequently, the derivation of the scale changing network
reduces to the analysis of the cascade of planar discontinuity
planes. For unbounded or non planar structures such approach
requires additional approximations and consequently, is less
attractive than in case of planar and bounded circuits.

III. COMPUTATIONAL RESULTS

The phase shifter shown in Fig. 1 has been characterized
in Ku-band frequency range [10, 11] and the measurement
technique is reported in [12]. The planar phase-shifter is
located in the cross-section of a metallic square waveguide.
Fig. 6 displays the elements of the measurement cell. The
numerical and experimental data are reported in Fig. 7 for4
various MEMS configurations (see figure caption of Fig. 7).
A very good agreement is observed between results obtained
from the scale changing technique and measurements in the
whole frequency band. Fig. 8 displays the phase-shift variation
versus the discrete (210=1024) accessible states of the10 RF-
MEMS switches. We observe a phase-shift range of about
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states of switches in one slotΩ2

2
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Measurements; (×××) Scale Changing Technique. Dimensions are (see Fig.
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=0.1,b2,1

4
=0.1,

x1,2
3

=2.4, x1,3
3

=5.3,x1,4
3

=8.7,x1,5
3

=11.1,x2,1
3

=0.45,x2,2
3

=1.35,x2,3
3

=4.25,
x2,4
3

=9.65 andx2,5
3

=11.15.

360◦ and the maximum phase-shift between two successive
configurations is less than10◦.

The proposed scale changing approach is much better than
the Finite Element Method (FEM) software in time costing.
Fig. 9 displays the computation time for calculating the phase-
shift in a given MEMS switches configuration. Electromag-
netic simulations are carried out on a PC with1Giga of
RAM and 1.8GHzclock frequency. The number of passive
modes at the largest scale (Ω0-domain) is tuned from1000
to 4150 (with step of 50). The number of modes in the
intermediateΩi,j

k domains is chosen so that their number
per m2 is constant. For comparison purposes the number of
tetrahedrons used in the FEM-based software is tuned form
1799to 106.460corresponding to1 to 16 passes with 35% of
mesh refinement per pass. The initial mesh in the FEM-based
software is set so that most element lengths are approximately
one-quarter wavelength. Fig. 9 indicates that the convergence
is reached in470s by adopting3350 active modes in the
scale changing technique (with an error equals to0.16%)
while 1300sare required with the commercial software for
obtaining a result with an error equals to7.2%. The CPU
time for the calculation of the phase-shift is2,5 times less than
that of the FEM-based software. Moreover, the computation
by the Scale Changing Technique of all the 1024 available
phase-shifts is quasi-instantaneously. Now let us consider the
computation of the phase-shift for the1024 accessible RF-
MEMS configurations. The admittance matrix obtained from
the cascade of the4 scale changing networks allows modelling
the electromagnetic coupling between the largest scalesl = 0
and the smallest scalesl = 4. This matrix does not depend
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state) at 11.7GHz.
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Fig. 9. Phase shift versus the computation time for the configuration A
(see Fig. 7). Computation time varies with the number of tetrahedrons (in
FEM-based software) or with the number of modes (in the scalechanging
technique). It is shown that the convergence of the computational results is
reached more rapidly in the scale changing technique than inthe FEM-based
software. Moreover, when the convergence is reached, a verygood agreement
is obtained between results obtained from the scale changing technique and
measurements. (—) Measurements; (×××) scaling changing technique and
(♦♦♦) FEM-based software.

on the state of the MEMS switches and its size is11x11. The
210 configurations associated with the UP/DOWN states of
the10 MEMS switches are modeled by10 shunt impedances.
Once the admittance matrix is calculated, only10 seconds
of computation time are required to sweep the1024possible
configurations of the10 switches. For technological reasons,
the UP-state capacitanceCup of RF-MEMS switches is set to
15fF. Let us find the DOWN-state capacitanceCdown allowing
a phase dynamics close to360◦. This problem of great practi-
cal importance can not be solved easily by using FEM-based
software due high time-consuming [10,11] but is efficiently
solved by applying the Scale Changing Technique. Fig. 10
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Fig. 10. Phase shift versus the configurations of the RF-MEMSswitches for
various ratiosCdown/Cup (Cup = 15fF ) at 11.7GHz.

represents the obtained variation of the phase-shift versus
the RF-MEMS configurations for various ratiosCdown/Cup

and allows choosing easily the DOWN-state capacitance. For
achieving a phase dynamics close to360◦ one may choose
Cdown/Cup > 30.

IV. CONCLUSION

A scale changing technique has been reported and applied
with success to the electromagnetic modelling of MEMS-
controlled planar phase-shifter. A very good agreement has
been observed between computational results and measure-
ments in the whole frequency band. Very good performances
in terms of accuracy and CPU time have been obtained.
The application of the sale changing technique for the elec-
tromagnetic modelling of reflectarrays composed of a finite
number of MEMS-controlled planar phase-shifters is under
way. The Scale Changing Technique is a generic approach
and is not only applicable to RF MEMS-Based reflectarray
antennas. It can be advantageously applied to microwave or
millimeterwave circuits with high (pathological) aspect ratios
and to planar multiscale (or fractal) structures.

APPENDIX

EXPRESSION OF [Y0,1] IN FIG . 5:

[Y0,1] =

[

Y0,111 Y0,112

Y0,121 Y0,122

]

Y0,111 = Y
(0)
Ma1 + tP0

(

P ′

0Z0
tP ′

0

)

−1
P0 (4)

Y0,112 = − tP0

(

P ′

0Z0
tP ′

0

)

−1
(5)

Y0,121 = −
(

P ′

0Z0
tP ′

0

)

−1
P0 (6)

Y0,122 =
(

P ′

0Z0
tP ′

0

)

−1
(7)

where tP0 is the transpose of the matrixP0. The element
(p

0u,v) of the matrixP0 whereu = (m, n, [TE, TM ]), v =
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(m′, n′, [TE, TM ]), (m, n) ∈ [1 : N0m
]x[1 : N0n

], (m′, n′) ∈
[1 : N1m

]x[1 : N1n
] is given by

(p
0u,v) =

〈

f
0u

, f
1v

〉

f
iu

(i = [0, 1]) denotes the TE and TM modes in theΩi

domain and〈 , 〉 is the inner product. The element
(

p′
0u,v

)

of P ′

0 has the same expression as(p
0u,v) but with (m, n) ∈

[N0m
+ 1 : M0m

]x[N0n
+ 1 : M0n

] .

The element(z0u,u), u = (m, n, [TE, TM ]), (m, n) ∈
[N0m

+ 1 : M0m
]x[N0n

+ 1 : M0n
] of Z0 is given by

z
0u,u = Z

(a)
M0(u,u) −

(

Z
(a)
M0(u,u)

)2

Z
(a)
M0(u,u) + Z

(b)
M0(u,u)

where the indicesa andb refer to the notations of Fig. 2, and
p = [a, b] :

Zp

M0(u,u) =







Zp

M0(m,n,TE) =
γ

p

0(m,n)

jωµ0

Zp

M0(m,n,TM) =
jωε0ε(p)

r

γ
p

0(m,n)

whereγp

0(m,n) represents the complex propagation constant
of the guided modes on the waveguide of cross sectionΩ0

(see Fig. 2). Y a
M01

in relation (4) is given by
Y a

M01 = Y a
M0(1,0,TE) = 1

Za
M0(1,0,T E)

.

EXPRESSION OF [Z1,2] IN FIG . 5:

[Z1,2] =

[

P1 (tP ′

1YM1P
′

1)
−1 tP1 −P1 (tP ′

1YM1P
′

1)
−1

− (tP ′

1YM1P
′

1)
−1 tP1 (tP ′

1YM1P
′

1)
−1

]

where P1 = t
[

P
(1)
1 P

(2)
1

]

. The element
(

p
(i)
1u,v

)

of

P
(i)
1 (i = [1, 2]) where u = (m, n, [TE, TM ]), v =

(m′, n′, [TE, TM ]), (m, n) ∈ [1 : N1m
]x[1 : N1n

], (m′, n′) ∈
[

1 : N i
2m

]

x
[

1 : N i
2n

]

, (TE m 6= 0, TM n 6= 0) is given by

(

p(i)
1u,v

)

=
〈

f
1u

, f (i)

2v

〉

f
(i)
2v

(i = [1, 2]) denotes the TE and TM modes in theΩi
2

domain. P ′

1 = t
[

P
′(1)
1 P

′(2)
1

]

and the element
(

p
′(i)
1u,v

)

of

P
′(i)
1 , (i = [1, 2]) has the same expression as

(

p
(i)
1u,v

)

but with

(m, n) ∈ [N1m
+ 1 : M1m

]x[N1n
+ 1 : M1n

] .

The element
(

YM1(u,u)

)

, u = (m, n, [TE, TM ]), (m, n) ∈
[N1m

+ 1 : M1m
]x[N1n

+ 1 : M1n
] of YM1 is given by

YM1(u,u) =











YM1(m,n,TE) =
γa
1(m,n)

jωµ0
+

γb
1(m,n)

jωµ0

YM1(m,n,TM) =
jωε0ε(a)

r

γa
1(m,n)

+
jωε0ε(b)

r

γb
1(m,n)

whereγp

1(m,n) (p = [a, b]) is related toΩ1.

EXPRESSION OF
[

Y i
2,3

]

, i = [1, 2] IN FIG . 5:

[

Y i
2,3

]

=

[

Y i
2,311

Y i
2,312

Y i
2,321

Y i
2,322

]

Y i
2,311

= −P
(i)
2

(

tP
′(i)
2 Z

(i)
M2

P
′(i)
2

)

−1

Y i
2,312

= P
(i)
2

(

tP
′(i)
2 Z

(i)
M2

P
′(i)
2

)

−1
tP

(i)
2

Y i
2,321

=
(

tP
′(i)
2 Z

(i)
M2

P
′(i)
2

)

−1

Y i
2,322

= −
(

tP
′(i)
2 Z

(i)
M2

P
′(i)
2

)

−1
tP

(i)
2

where P
(i)
2 = t

[

P
(i,1)
2 P

(i,2)
2 P

(i,3)
2 P

(i,4)
2 P

(i,5)
2

]

. The

element
(

p
(i,j)
2u,v

)

of P
(i,j)
2 , (i = [1, 2] , j = [1 : 5]) where

u = (m, n, [TE, TM ]) , v = (m′, n′, [TE, TM ]), (m, n) ∈
[

1 : N i
2m

]

x
[

1 : N i
2n

]

, (m′, n′) ∈
[

1 : N i,j
3m

]

x
[

1 : N i,j
3n

]

,

(TE m 6= 0, TM n 6= 0), (TE m′ 6= 0, TM n′ 6= 0) is given
by

(

p(i,j)
2u,v

)

=
〈

f
(i)

2u
, f (i,j)

3v

〉

f
(i,j)
3v

(i = [1, 2] , j = [1 : 5]) denotes the TE

and TM modes in the Ωi,j
3 domain. P

′(i)
2 =

t
[

P
′(i,1)
2 P

′(i,2)
2 P

′(i,3)
2 P

′(i,4)
2 P

′(i,5)
2

]

and the element
(

p
′(i,j)
2u,v

)

of P
′(i,j)
2 , i = [1, 2] , j = [1 : 5] , has

the same expression as
(

P
(i,j)
2

)

but with (m, n) ∈

[N1m
+ 1 : M1m

]x[N1n
+ 1 : M1n

] .

The element
(

Z
(i)
M2(u,u)

)

, i = [1, 2],

u = (m, n, [TE, TM ]), (m, n) ∈
[

N i
2m

+ 1 : M i
2m

]

x
[

N i
2n

+ 1 : M i
2n

]

of Z
(i)
M2

is given
by

Z
(i)
M2(u,u) =







































Z
(i)
M2(m,n,TE) =

jωµ0

γ
(1)
a(m,n)

∗
jωµ0

γ
(1)
b(m,n)

jωµ0

γ
(1)
a(m,n)

+
jωµ0

γ
(1)
b(m,n)

,

Z
(i)
M2(m,n,TM) =

γ
(1)
a(m,n)

jωε0ε
(a)
r

∗

γ
(1)
b(m,n)

jωε0ε
(b)
r

γ
(1)
a(m,n)

jωε0ε
(a)
r

+
γ
(1)
b(m,n)

jωε0ε
(b)
r

whereγ
p(i)

2(m,n) (p = [a, b]) is related toΩ(i)
2 .

EXPRESSION OF
[

Z
(i,j)
3,4

]

, i = [1, 2] , j = [1 : 5] IN FIG . 5:

[

Z
(i,j)
3,4

]

=

[

Z
(i,j)
3,411

Z
(i,j)
3,412

Z
(i,j)
3,421

Z
(i,j)
3,422

]

Z
(i,j)
3,411

= P
(i,j)
3

(

tP
′(i,j)
3 Y

(i,j)
M3

P
′(i,j)
3

)

−1
tP

(i,j)
3

Z
(i,j)
3,412

= −P
(i,j)
3

(

tP
′(i,j)
3 Y

(i,j)
M3

P
′(i,j)
3

)

−1

Z
(i,j)
3,421

= −
(

tP
′(i,j)
3 Y

(i,j)
M3

P
′(i,j)
3

)

−1
tP

(i,j)
3

Z
(i,j)
3,422

=
(

tP
′(i,j)
3 Y

(i,j)
M3

P
′(i,j)
3

)

−1
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The element
(

p
(i,j)
3u,v

)

of P
(i,j)
3 , i = [1, 2], j = [1 : 5] where

u = (m, n, [TE, TM ]), v = (m′, n′, [TE, TM ]), (m, n) ∈
[

1 : N i,j
3m

]

x
[

1 : N i,j
3n

]

, (m′, n′) ∈
[

1 : N i,j
4m

]

x
[

1 : N i,j
4n

]

,

(TE m 6= 0, TM n 6= 0), (TE m′ 6= 0, TM n′ 6= 0) is given
by

(

p(i,j)
3u,v

)

=
〈

f
(i,j)

3u
, f (i,j)

4v

〉

f
(i,j)
4v

(i = [1, 2] , j = [1 : 5]) denotes the TE and TM modes

in theΩi,j
4 domain. The element

(

p
′(i,j)
3u,v

)

of P
′(i,j)
3 , i = [1, 2],

j = [1 : 5], has the same expression as
(

P
(i,j)
3

)

but with

(m, n) ∈
[

N i,j
3m

+ 1 : M i,j
3m

]

x
[

N i,j
3n

+ 1 : M i,j
3n

]

.

The element
(

Y
(i,j)
M3(u,u)

)

, i = [1, 2], j =

[1 : 5], u = (m, n, [TE, TM ]), (m, n) ∈
[

N i,j
3m

+ 1 : M i,j
3m

]

x
[

N i,j
3n

+ 1 : M i,j
3n

]

of Y
(i,j)
M3

is given
by

Y
(i,j)
M3(u,u) =











Y
(i,j)
M3(m,n,TE) =

γ
a(i,j)

3(m,n)

jωµ0
+

γ
b(i,j)

3(m,n)

jωµ0

Y
(i,j)
M3(m,n,TM) =

jωε0ε(a)
r

γ
a(i,j)

3(m,n)

+
jωε0ε(b)

r

γ
a(i,j)

3(m,n)

whereγ
p(i,j)

3(m,n) (p = [a, b]) is related toΩ(i,j)
3 .
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