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Abstract

Parameter estimation of time-varying non-Gaussian autoregressive processes can be a highly nonlinear

problem. The problem gets even more diÆcult if the functional form of the time variation of the process

parameters is unknown. In this paper we address parameter estimation of such processes by particle �ltering,

where posterior densities are approximated by sets of samples (particles) and particle weights. These sets are

updated as new measurements become available using the principle of sequential importance sampling. From

the samples and their weights one can compute a wide variety of estimates of the unknowns. In absence of

exact modeling of the time variation of the process parameters, we exploit the concept of forgetting factors

so that recent measurements a�ect current estimates more than older measurements. We investigate the

performance of the proposed approach on autoregressive processes whose parameters change abruptly at

unknown instants and with driving noises which are Gaussian mixtures or Laplacian processes.

I. Introduction

In on-line signal processing, a typical objective is to process incoming data sequentially in time

and extract information from them. Applications vary and include system identi�cation [30], equal-

ization [31], [32], echo cancelation [11], blind source separation [22], beamforming [20], [23], blind

deconvolution [21], time-varying spectrum estimation [20], adaptive detection [38], and digital en-

hancement of speech and audio signals [15]. These applications �nd practical use in communi-

cations, radar, sonar, geophysical explorations, astrophysics, biomedical signal processing, and

�nancial time series analysis.

The task of on-line signal processing usually amounts to estimation of unknowns and tracking

them as they change with time. A widely adopted approach to addressing this problem is the

Kalman �lter, which is optimal in cases when the signal models are linear and the noises are

additive and Gaussian [30]. The framework of the Kalman �lter allows for derivation of all the

recursive least-squares (RLS) adaptive �lters [34]. When nonlinearities have to be tackled, the

extended Kalman �lter becomes the tool for estimating the unknowns of interest [2], [20], [24].

It has been shown in the literature that in many situations the extended Kalman �lter, due to

the implemented approximations, can diverge in the tracking of the unknowns and in general can

provide poor performance [16]. Many alternative approaches to overcome the de�ciencies of the

extended Kalman �lter have been tried including Gaussian sum �lters [1], approximations of the �rst

two moments of densities [12], evaluations of required densities over grids [27], and the unscented

Kalman �lter [25].

Another approach to tracking time-varying signals is particle �ltering [7]. The underlying ap-

proximation implemented by particle �lters is the representation of densities by samples (particles)

and their associated weights. In particular, if x(m) and w
(m), m = 1; 2; � � � ;M are the samples and
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their weights respectively, one approximation of p(x) is given by

p̂(x) =

MX
i=1

w
(m)

Æ(x� x
(m)) (1)

where Æ(�) is Dirac's delta function. The approximation of the densities by particles can be imple-

mented sequentially, where as soon as the next observation becomes available, the set of particles

and their weights are updated using the Bayes rule. Some of the basics of this procedure are

reviewed in this paper. The recent interest in particle �lters within the signal processing commu-

nity has been initiated by [16], where a special type of particle �lters are used for target tracking.

Since the particle �ltering methods are computationally intensive, the continued advancement of

computer technology in the past few years has played a critical role in sustaining this interest. An

important feature of particle �ltering is that it can be implemented in parallel, which allows for

major speed-ups in various applications.

One advantage of particle �lters over other methods is that they can be applied to almost any

type of problem where signal variations are present. This includes models with high nonlinearities

and with noises that are not necessarily Gaussian. In all the work on particle �ltering presented

in the wide literature, it is assumed that the applied model is composed of a state equation and

an observation equation, where the state equation describes the dynamics of the tracked signal (or

parameters). Thus, the use of particle �lters requires knowledge of the functional form of the signal

(parameter) variations. In this paper, we make the assumption that this model is not available, that

is, we have no information about the dynamics of the unknowns. In absence of a state-equation, we

propose to use a random walk model for describing the time variation of the signal (or parameters).

We show that the random walk model implies forgetting of old measurements [6], [37]. In other

words, it assigns more weight to more recent observations than to older measurements.

In this paper we address the problem of tracking the parameters of a non-Gaussian autoregres-

sive (AR) process whose parameters vary with time. The usefulness of the modeling of time series

by autoregressions is well documented in the wide literature [19], [26]. Most of the reported work,

however, deals with stationary Gaussian AR processes, and rightfully so because many random pro-

cesses can be modeled successfully with them. In some cases, however, the Gaussian AR models are

inappropriate, as for instance, for processes that contain spikes, that is, samples with large values.

Such signals are common in underwater acoustic, communications, oil exploration measurements,

and seismology. In all of them, the processes can still be modeled as autoregressions, but with

non-Gaussian driving processes, for example, Gaussian mixture or Laplacian processes. Another

deviation from the standard AR model is the time-varying AR model where the parameters vary

with time [5], [10], [17], [18], [28], [33], [37].

The estimation of the AR parameters of non-Gaussian AR models is a diÆcult task. Parameter

estimation of such models has rarely been reported, primarily due to lack of tractable approaches for

dealing with them. In [35], a maximum likelihood estimator is presented and its performance com-

pared to the Cramer-Rao bound. The conditional likelihood function is maximized by a Newton-

Raphson search algorithm. This method obviously cannot be used in the setting of interest in

this paper. In a more recent publication, [36], the driving noises of the AR model are Gaussian

mixtures, and the applied estimation method is based on a generalized version of the expectation-

maximization principle.

When the AR parameters change with time, the problem of their estimation becomes even more

diÆcult. In this paper, the objective is to address this problem, and the applied methodology is

based on particle �ltering. In [9] and [14], particle �lters are also applied to estimation of time-

varying AR models, but the driving noises there are Gaussian processes.
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The paper is organized as follows. In Section II, we formulate the problem. In Section III, we

provide a brief review of particle �ltering. An important contribution of the paper is in Section IV,

where we propose particle �lters with forgetting factors. The proposed method is applied to time-

varying non-Gaussian autoregressive processes in Section V. In Section VI, we present simulation

examples, and in Section VII, we conclude the paper with some �nal remarks.

II. Problem Formulation

Observed data yt, t = 1; 2; � � � ; represent a time-varying AR process of order K that is excited

by a non-Gaussian noise. The data are modeled by

yt =

KX
k=1

atkyt�k + vt

where vt is the driving noise of the process, and atk, k = 1; 2; :::;K are the parameters of the process

at time t. The values of the AR parameters are unknown, but the model order of the AR process,

K, is assumed known. The driving noise process is iid and non-Gaussian, and is modeled as either

a Gaussian mixture with two mixands, i.e.,

vt � (1� �)N (0; �21) + �N (0; �22) (2)

where 0 < � < 1, and �
2
2 >> �

2
1 , or as a Laplacian, that is,

vt �
�

2
e
��jvtj (3)

where � > 0. In this paper we assume that the noise parameters, �; �21 ; and �
2
2 of the Gaussian mix-

ture process and � of the Laplacian noise are known. The objective is to track the AR parameters,

atk, k = 1; 2; � � � ;K, 8t.

III. Particle Filters

Many time-varying signals of interest can be described by the following set of equations:

xt = ft(xt�1; ut)

yt = ht(xt; vt)
(4)

where t 2 N is a discrete-time index, xt 2 R is an unobserved signal at t, yt 2 R is an observation,

and ut 2 R and vt 2 R are noise samples. The mapping ft : R � R 7! R is referred to as a signal

transition function, and ht : R � R 7! R, as a measurement function. The analytic forms of the

two functions are assumed known. Generalization of (4) to include vector observations and signals

as well as multivariable functions is straightforward.

There are three di�erent classes of signal processing problems related to the model described by

(4):

1. �ltering: 8 t, estimate xt based on y1: t,

2. prediction: 8 t and some � > 0, estimate xt+� , based on y1: t, and

3. smoothing: 8t, estimate xt, based on y1:T , t 2 ZT = f1; 2; : : : ; Tg

where y1: t = fy1; y2; � � � ; ytg: Another very important objective is to carry out the estimation of

the unknowns recursively in time.

A key expression for recursive implementation of the estimation is the update equation of the

posterior density of x1: t = fx1; x2; � � � ; xtg, which is given by

p(x1: tjy1: t) =
p(ytjxt) p(xtjxt�1)

p(ytjy1: t�1)
p(x1: t�1jy1: t�1): (5)
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Under the standard assumptions that ut and vt represent additive noise and are independently

and identically distributed according to Gaussian distributions and that the functions ft(�) and

ht(�) are linear in xt�1 and xt, respectively, the above problems are optimally resolved by the

Kalman �lter [2]. When the optimal solutions cannot be obtained analytically, one resorts to

various approximations of the posterior distributions [2], [24].

The set of methods known as particle �ltering methods are based on a very interesting paradigm.

The basic idea is to represent the distribution of interest as a collection of samples (particles)

from that distribution. One draws M particles, Xt = fx
(m)
t
g
M

m=1, from a so called importance

sampling distribution �(x1:tjy1:t). Subsequently, the particles are weighted as w
(m)
t

=
p(x

(m)
1:t jy1:t)

�(x
(m)
1:t jy1:t)

. If

Wt = fw
(m)
t
g
M

m=1, then the sets Xt and Wt can be used to approximate the posterior distribution

p(xtjy1:t) as in (1), or

p̂(xtjy1:t) =

MX
m=1

w
(m)
t

Æ(xt � x
(m)
t

): (6)

It can be shown that the above estimate converges in distribution to the true posterior as M !1

[13]. More importantly, the estimate of Ep(g(xt)), where Ep(g(�)) is the expected value of the

random variable g(xt) with respect to the posterior distribution p(xtjy1:t), can be written as

Êp(g(xt)) =

MX
m=1

w
(m)
t

g(x
(m)
t

): (7)

Thus, the particles and their weights allow for easy computation of minimum mean square error

(MMSE) estimates. Other estimates are also easy to obtain.

Due to the Markovian nature of the state equation, we can develop a sequential procedure called

sequential importance sampling (SIS), which generates samples from p(x1:tjy1:t) sequentially [16],

[29]. As new data become available, the particles are propagated by exploiting (5). In this sequential

updating mechanism, the importance function has the form �(xtjx1: t�1; y1: t), which allows for easy

computation of the particle weights. The ideal importance function minimizes the conditional

variance of the weights and is given by [8]

�(xtjx1: t�1; y1: t) = p(xtjxt�1; yt)

/ p(ytjxt)p(xtjxt�1):

The SIS algorithm can be summarized as follows:

1. At time t = 0, we generate M particles from �(x0) and denote them x
(m)
0 ;m = 1; : : : ;M , with

weights

w
(m)
0 =

p(x
(m)
0 )

�(x
(m)
0 )

where p(x0) is the prior density of x0.

2. At times t = 1; : : : ; T , let Xt = fx
(m)
t
g
M

m=1 be the set of particles with weights Wt = fw
(m)
t
g
M

m=1.

The particles and weights fx
(m)
t�1; w

(m)
t�1)g

M

m=1 approximate the posterior density p(xt�1jy1:t�1) ac-

cording to (6). We obtain the particles and weights for time t from steps 3, 4 and 5.

3. For m = 1; : : : ;M , draw x
(m)
t

� �(xtjx
(m)
1:t�1; y1:t).

4. For m = 1; : : : ;M , compute the weights of x
(m)
t

using [8]

�w
(m)
t

= w
(m)
t�1

p(ytjx
(m)
t

)p(x
(m)
t
jx

(m)
t�1)

�(x
(m)
t
jx

(m)
1:t�1; y1:t)

: (8)



5

5. Normalize the weights using

w
(m)
t

=
�w
(m)
tP

M

j=1 �w
(j)
t

:

An important problem that occurs in sequential Monte Carlo methods is that of sample degen-

eration. As the recursions proceed, the importance weights of all but a few of the trajectories

become insigni�cant [29]. The degeneracy implies that the performance of the particle �lter will

be very poor. To combat the problem of degeneracy, resampling is used. Resampling e�ectively

throws away the trajectories (or particles) with negligible weights and duplicates the ones having

signi�cant weights, in proportion to their weights. Simple random resampling is implemented in

the following manner. Let fx
(m)
t

; w
(m)
t
g
M

m=1 be the weights and particles that are being resampled.

Then

1. For m = 1; : : : ;M , generate a number j 2 f1; : : : ;Mg with probabilities proportional to fw
(1)
t
;

: : : ; w
(M)
t

g, and let ex(m)
t

= x
(j)
t
.

2. For m = 1; : : : ;M , let ew(m)
t

= 1=M . Then fex(m)
t

; ew(m)
t
g
M

m=1 represents the new sets of weights

and particles.

Improved resampling in terms of speed can be implemented by using the so called systematic

resampling scheme [4] or strati�ed resampling [3].

Much of the activity in particle �ltering in the sixties and seventies was in the �eld of automatic

control. With the advancement of computer technology in the eighties and nineties, the work on

particle �lters intensi�ed and many new contributions appeared in journal and conference papers.

A good source of recent advances and many relevant references is [7].

IV. Particle Filters with Forgetting Factors

In many practical situations, the function that describes the time variation of the signals ft(�) is

unknown. It is unclear then how to apply particle �lters, especially keeping in mind that a critical

density function needed for implementing the recursion in (5) is missing. Note that the form of

the density p(xtjxt�1) depends directly on ft(�). In [6], we argue that this is possible and can be

done in somewhat similar way as with methods known as recursive least-squares with discounted

measurements [19]. Recall that the idea there is to minimize a criterion of the form

"t =

tX
n=1

�
t�n

e
2
n

where � is known as a forgetting factor with 0 < � � 1, and et is an error that is minimized and

given by

et = yt � dt

with dt being a desired signal. The tracking of the unknowns is possible without knowledge of the

parametric function of their trajectories because with � < 1, the more recent measurements have

larger weights than measurements taken further in the past. In fact, we apply implicitly a window

to our data that allows more recent data to a�ect current estimates of the unknowns more than

old data.

In the case of particle �lters, one can replicate this philosophy by introducing a state equation

that will enforce \aging" of data. Perhaps the simplest way of doing it is to have a random walk

model in the state equation, that is

xt = xt�1 + ut (9)
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where ut is a zero mean random sample that comes from a known distribution. Now, if the particles

x
(m)
t�1 with their weights w

(m)
t�1 approximate p(xt�1jy1:t�1), with (9) the distribution of xt will be wider

due to the convolution of the densities of xt�1 and ut. It turns out that this implies forgetting of

old data, where the forgetting depends on the parameters of p(ut). For example, the larger the

variance of ut, the faster the forgetting of old data [6]. Additional theory on the subject can be

found in [37] and the references therein. In the next section we present the details of implementing

this approach to the type of AR processes of interest in this paper.

V. Estimation of time-varying non-Gaussian autoregressive processes by particle

filters

The observation equation of an AR(K) process can be written as

yt = a
T

t
yt + vt (10)

where aTt � (at1; : : : ; atK) and yt � (yt�1; : : : ; yt�K)
T. Since the dynamic behavior of at is unknown,

as suggested in the previous section, we model it with a random walk, i.e.,

at = at�1 + ut (11)

where ut is a known noise process from which we can draw samples easily. It is reasonable to choose

the noise process as a zero mean Gaussian with covariance matrix �ut
. The covariance matrix �ut

is then set to vary with time by depending on the covariance matrix �at�1 . For example, for the

AR(1) problem, we choose

�
2
at
=

�
2
at�1

�

where � is the forgetting factor. From (11), we get

�
2
ut
= �

2
at�1

(
1

�
� 1): (12)

Similarly, for K > 1; we can choose

�ut
= �diag(

1

�
� 1)

where �diag is a diagonal matrix whose diagonal elements are equal to the diagonal elements of

�at�1 .

Now, the problem is cast in the form of a dynamic state space model, and a particle �ltering

algorithm for sequential estimation of at can readily be applied as discussed in the previous section.

An important component of the algorithm is the importance function, �(atja1:t�1; y1:t), which is

used to generate the particles a
(m)
t

.

The algorithm can be outlined as follows:

1. Initialize fa
(m)
0 g

M

m=1 by obtaining samples from a prior distribution p(a0) and let �w
(m)
0 = 1 for

m = 1; : : : ;M . Then for each time step repeat steps 2-6.

2. Compute the covariance matrix of at and obtain the covariance matrix �ut
.

3. For i = 1; : : : ;M , obtain samples a
(m)
t

from the importance function �(atja
(m)
1:t�1; y1:t). A simple

choice of it is p(atja
(m)
t�1).

4. For i = 1; : : : ;M , update the importance weights by

�w
(m)
t

= w
(m)
t�1

p(ytja
(m)
t

)p(a
(m)
t
ja

(m)
t�1)

�(a
(m)
t
ja

(m)
1:t�1; y1:t)

:
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If the driving noise is a Gaussian mixture and �(atja
(m)
1:t�1; y1:t) = p(atja

(m)
t�1), the update is given by

�w
(m)
t

= w
(m)
t�1

�
(1� �)N (a

(m)T
t

yt; �
2
1) + �N (a

(m)T
t

yt; �
2
2)
�
:

If the noise is Laplacian, the update is done by

�w
(m)
t

= w
(m)
t�1e

��jyt�a
(m)T
t

ytj:

5. Normalize the weights according to

w
(m)
t

=
�w
(m)
tP

M

i=1 �w
(m)
t

:

6. Resample occasionally or at every time instant from fa
(m)
t

; w
(m)
t
g
M

m=1 to obtain particles of equal

weights.

VI. Simulation Results

We present, next, results of experiments that show the performance of the proposed approach.

In all our simulations we use the p(atjat�1) as the importance function. First, we show a simple

example that emphasizes the central ideas in this paper. We estimated recursively the coeÆcient

of an AR(1) process with non-Gaussian driving noise. The data were generated according to

yt = ayt�1 + vt

where vt was distributed as in (2), with � = 0:1, �21 = 1, and �
2
2 = 100. Note that a did not vary

with time in this experiment, and that its value was �xed to 0:99. A random walk was used as the

process equation to impose forgetting of measurements, i.e.,

at = at�1 + ut

where ut was zero mean Gaussian with variance �2ut chosen according to (12) with forgetting factor

� = 0:9999. The number of particles was M = 2000. For comparison purposes, we applied

a recursive least-squares (RLS) algorithm whose forgetting factor was also � = 0:9999.1 One

particular representative simulation is shown in Figure 1. Note that a was tracked more accurately

using the particle �lter algorithm. Similar observations were made in most simulations.

With data generated by this model, we compared the performances of the particle �lter and the

RLS for various number of particles. The methods were compared by their MSE's averaged over

20 realizations. The results are shown in Figure 2. It is interesting to observe that for M = 50

and M = 100, the particle �lter had worse performance than the RLS �lter. As expected, as the

number of particles increased, the performance of the particle �lter improved considerably.

In Figure 3, we present the evolution of the instantaneous mean-square errors as a function of

time of the particle �ltering and the RLS methods. The instantaneous mean-square errors were

obtained from 20 realizations, and

MSEi(t) =

20X
j=1

(âj;t � at)
2

1It should be noted that the RLS algorithm is not based on any probabilistic assumptions, and that it is computa-

tionally much less intensive than the particle �ltering algorithm.
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Fig. 1. Estimation of an autoregressive parameter a using the RLS and particle �ltering methods. The

parameter a was �xed and was equal to 0.99.

where âj;t is the estimate of at in the j�th realization. For the particle �lter we used M = 2000

particles, and � = 0:9999. Clearly, the particle �lter performed better. It is not surprising that the

largest errors occur at the beginning, since there the methods have little prior knowledge of the

true value of the parameter a.

In the next experiment, the noise was Laplacian. There, the parameter � was varied and had

values 10, 2, and 1. In Figure 4, we present the MSE's of the particle �lter and the RLS estimate

averaged over 20 realizations. The particle �lter clearly outperformed the RLS for all values of �.

The results of the �rst experiment with time-varying AR parameters are shown in Figure 5.

There, a was attributed a piecewise changing behavior where it jumped from 0:99 to 0:95 at the

time instant t = 1001, and the driving noise was a mixture Gaussian as in the �rst experiment.

The forgetting factor � was 0.95. Note that both the RLS and the particle �lter follow the jump.

However, the particle �lter tracks it with higher accuracy and lower variation. Note also that the

variation in the estimates in this experiment is much higher since the chosen forgetting factor was

much smaller.

Statistical results of this experiment are shown in Figure 6. The �gure shows the MSE's of the

particle �lter and the RLS method averaged over 20 realizations as functions of time. The particle

�lter outperformed the RLS signi�cantly.

The experiment was repeated for a jump of a from 0:99 to �0:99 at t = 1001. Two di�erent

values of forgetting factors were used, � = 0:99 and � = 0:95, and the number of particles was kept

at M = 2000: In Figures 7 and 8, we plotted MSE(t) obtained from 20 realizations. It is obvious

from the �gures that the performance of the particle �lter was not good for � = 0:95. The main

reason for this degradation is the importance function of the particle �lter. The prior importance

function does not expect a change at that time because it does not use observations for generating

particles. As a result, the particles at t = 1001 are generated around the values of a
(m)
1000, which are

all far away from the actual value of a. Moreover, it took the particle �lter more than 700 samples

to \regroup," and that is a consequence of the relatively high value of the forgetting factor. When

this value was decreased to � = 0:9, the recovery of the particle �lter was much shorter. Note

that the price for improvement was a larger MSE during the periods of time when a was constant.
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Fig. 2. Mean-square error of the particle �lter and the RLS method averaged over 20 realizations. The

driving noise was a Gaussian mixture.
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Fig. 3. Evolution of the log(MSEi(t)) of the particle �lter and the RLS method.

One can enhance the performance of the particle �lter by choosing an importance function which

explores the parameter space of a better.

In another experiment we generated data with higher order AR models. In particular, the data

were obtained by

yt = �0:7348yt�1 � 1:8820yt�2 � 0:7057 � yt�3 � 0:8851yt�4 + vt; t = 1; 2; � � � ; 500

yt = 1:352yt�1 � 1:338yt�2 + 0:662 + yt�3 � 0:240yt�4 + vt; t = 501; 502; � � � ; 1000

yt = 0:37yt�1 + 0:56yt�2 + vt; t = 1001; 1002; � � � ; 1500

The driving noise was a Gaussian mixture with the same parameters as in the �rst experiment.

The tracking of the parameters by the particle �lter and the RLS method from one realization is
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Fig. 4. Mean-square error of the particle �lter and the RLS method averaged over 20 realizations. The

driving noise was Laplacian.

shown in Figure 8. The number of particles was M = 2000 and the forgetting factor � = 0:9. In

Figure 9, we display the MSE errors of the two methods as functions of time.

Another statistical comparison between the two methods is shown in Figure 10. There we see the

average MSE's of the methods presented separately for each parameter and for various forgetting

factors. The number of particles M = 8000. The particle �lter performed better for a2t; a3t, and

a4t, but worse for a1t. A reason for the inferior performance of the particle �lter in tracking a1t

is perhaps due to the big change of values of a1t, which requires smaller forgetting factor than the

one used. More importantly, with better importance function the tracking performance of a1t can

also be better. Such function, would generate more particles in the region of the new values of the

parameters, and thereby would produce a more accurate approximation of their posterior density.

VII. Conclusions

We have presented a method for tracking the parameters of a time-varying AR process which is

driven by a non-Gaussian noise. The function that models the variation of the model parameters is

unknown. The estimation is carried out by particle �lters which produce samples and weights that

approximate required densities. The state equation that models the parameter changes with time

is a random walk model, which implies discounting of old measurements. In the simulations, the

parameters of the process are piecewise constant where the instants of their changes are unknown.

The piecewise model is not by any means a restriction imposed by the method, but was used for

convenience. Simulation results were presented. The requirement of knowing the noise parameters

that drive the AR process can readily be removed [?].
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Fig. 9. Tracking of the AR parameters, where the models change at t = 501 and t = 1001.
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Fig. 10. Evolution of the MSE of each of the AR parameters as a function of time.
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Fig. 11. Mean-square error of each of the AR parameters produced by the particle �lter and the RLS

method averaged over 20 realizations. The driving noise was mixture Gaussian.
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